Induction of methionine-sulfoxide reductases protects neurons from amyloid β-protein insults in vitro and in vivo.

نویسندگان

  • Jackob Moskovitz
  • Panchanan Maiti
  • Dahabada H J Lopes
  • Derek B Oien
  • Aida Attar
  • Tingyu Liu
  • Shivina Mittal
  • Jane Hayes
  • Gal Bitan
چکیده

Self-assembly of amyloid β-protein (Aβ) into toxic oligomers and fibrillar polymers is believed to cause Alzheimer's disease (AD). In the AD brain, a high percentage of Aβ contains Met-sulfoxide at position 35, though the role this modification plays in AD is not clear. Oxidation of Met(35) to sulfoxide has been reported to decrease the extent of Aβ assembly and neurotoxicity, whereas surprisingly, oxidation of Met(35) to sulfone yields a toxicity similar to that of unoxidized Aβ. We hypothesized that the lower toxicity of Aβ-sulfoxide might result not only from structural alteration of the C-terminal region but also from activation of methionine-sulfoxide reductase (Msr), an important component of the cellular antioxidant system. Supporting this hypothesis, we found that the low toxicity of Aβ-sulfoxide correlated with induction of Msr activity. In agreement with these observations, in MsrA(-/-) mice the difference in toxicity between native Aβ and Aβ-sulfoxide was essentially eliminated. Subsequently, we found that treatment with N-acetyl-Met-sulfoxide could induce Msr activity and protect neuronal cells from Aβ toxicity. In addition, we measured Msr activity in a double-transgenic mouse model of AD and found that it was increased significantly relative to that of nontransgenic mice. Immunization with a novel Met-sulfoxide-rich antigen for 6 months led to antibody production, decreased Msr activity, and lowered hippocampal plaque burden. The data suggest an important neuroprotective role for the Msr system in the AD brain, which may lead to development of new therapeutic approaches for AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methionine sulfoxide reductases protect Ffh from oxidative damages in Escherichia coli.

In proteins, methionine residues are primary targets for oxidation. Methionine oxidation is reversed by methionine sulfoxide reductases A and B, a class of highly conserved enzymes. Ffh protein, a component of the ubiquitous signal recognition particle, contains a methionine-rich domain, interacting with a small 4.5S RNA. In vitro analyses reported here show that: (i) oxidized Ffh is unable to ...

متن کامل

Regulation of Expression of Oxacillin-Inducible Methionine Sulfoxide Reductases in Staphylococcus aureus

Cell wall-active antibiotics cause induction of a locus that leads to elevated synthesis of two methionine sulfoxide reductases (MsrA1 and MsrB) in Staphylococcus aureus. To understand the regulation of this locus, reporter strains were constructed by integrating a DNA fragment consisting of the msrA1/msrB promoter in front of a promoterless lacZ gene in the chromosome of wild-type and MsrA1-, ...

متن کامل

Methionine sulfoxide reductase 2 reversibly regulates Mge1, a cochaperone of mitochondrial Hsp70, during oxidative stress

Peptide methionine sulfoxide reductases are conserved enzymes that reduce oxidized methionines in protein(s). Although these reductases have been implicated in several human diseases, there is a dearth of information on the identity of their physiological substrates. By using Saccharomyces cerevisiae as a model, we show that of the two methionine sulfoxide reductases (MXR1, MXR2), deletion of m...

متن کامل

Caspase inhibition in neuroinflammation induced by soluble β amyloid monomer, protects cells from abnormal survival and proliferation, via attenuation of NFқB activity

Introduction: Evidence suggests that neuronal apoptosis in neurodegenerative diseases is correlated with inflammatory reactions. The beneficial or detrimental role of apoptosis in neuroinflammation is unclear. Elucidating this question may be helpful in management of neurodegenerative diseases. Since TNF-α is able to induce apoptosis as well as increased viability of the cells by activation ...

متن کامل

Repair of oxidized proteins. Identification of a new methionine sulfoxide reductase.

Oxidation of methionine residues to methionine sulfoxide can lead to inactivation of proteins. Methionine sulfoxide reductase (MsrA) has been known for a long time, and its repairing function well characterized. Here we identify a new methionine sulfoxide reductase, which we referred to as MsrB, the gene of which is present in genomes of eubacteria, archaebacteria, and eucaryotes. The msrA and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 50 49  شماره 

صفحات  -

تاریخ انتشار 2011